
Efficient Software Engineering 
with Formal MDA

Sudhir Agarwal, Max Völkel

Institute of Applied Informatics and Formal Description 
Methods (AIFB),

University of Karlsruhe, Germany

Semantic Web enabled Software Engineering
November 2005, Galway, Ireland



Introduction

The idea of MDA is great
MDA suggests stepwise refinement of models
Graphical models are better suited for 
communication among humans than code
Models can be used to generate code

relieves programmers from many trivial tasks
enables rapid prototyping of ideas

…



Shortcomings of MDA
Developing models is costly. In practice,

role of UML, ER models is often confined to
communication among domain experts
code generation; once the code is available, 
programmers hardly use the models anymore

Translation loses some important features, 
e.g. relationships as first class citizens and cardinality 
constraints
each translation tool can produce different code from 
same model dependency on the tool

Modeling 100% manually; No reasoning support
e.g. for finding inconsistencies and redundancies in the 
model

Lack of support for dynamic aspects



Formal MDA
Two most important features of formal descriptions 
are

Automatic reasoning support
Conceptual as well as executable models

How can these features improve various software 
engineering phases?

requirement specification, 
analysis
design, 
implementation, 
testing
…



Req. Specification and Analysis

Requirements can be specified more 
precisely

enables identifying problems and open issues 
early
reduces misinterpretation by programmers

Reasoners can be used in the analysis phase
to find inconsistencies and redundant artifacts 
automatically

Reduce communication gap
reduce semantic errors in the software



Design / Modularity

Ontologies make schema integration easier
relationships are first class citizens

ABC XYZ

ABC should become sub-class of XYZ

MyABC



Implementation and Testing

Models as software assets 
reuse and search for already modeled artifacts

No translation needed since conceptual 
models are executable at the same time

allows different views on the same model
Test cases (e.g. JUnit) may be generated 
automatically from the requirement 
specification

automatic testing of the programmed software



Conclusion

UML, ER and XML popular but don’t offer 
much reasoning support
Formal MDA is less popular but offer added 
value due to formal semantics and reasoning 
support
Formal MDA may require more effort in the 
early stages of SE, but can be more efficient 
at the end
Is making ontologies more popular harder 
than adding semantics to UML?



Thank You!


	Efficient Software Engineering with Formal MDA
	Introduction
	Shortcomings of MDA
	Formal MDA
	Req. Specification and Analysis
	Design / Modularity
	Implementation and Testing
	Conclusion

